If it's not what You are looking for type in the equation solver your own equation and let us solve it.
44x^2+10x=15000
We move all terms to the left:
44x^2+10x-(15000)=0
a = 44; b = 10; c = -15000;
Δ = b2-4ac
Δ = 102-4·44·(-15000)
Δ = 2640100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2640100}=\sqrt{100*26401}=\sqrt{100}*\sqrt{26401}=10\sqrt{26401}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{26401}}{2*44}=\frac{-10-10\sqrt{26401}}{88} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{26401}}{2*44}=\frac{-10+10\sqrt{26401}}{88} $
| 3(t-1)–2(2t+3)=5(t+3) | | 18+4t=5t.T= | | 18+4t=5t.T= | | 18+4t=5t.T= | | (7+2x)/3=5x | | 6m+4(6m+7)-30=88 | | 15x-6=11x+34 | | 8x+16+9x+11=180 | | 18+4t=5tt= | | 5,8x+5,8=29 | | 5,8x+5,8=29 | | 2x-8-X=10 | | 2x-8-X=10 | | 5,8x+5,8=29 | | 5,8x+5,8=29 | | 4n+-2=-18 | | 7+24x=10 | | 4n+-2=-18 | | 7+24x=10 | | -11+10(x+1)=-4-5(2x+11) | | -11+10(x+1)=-4-5(2x+11) | | 14-19v=-19 | | -10x-0.8=-20x+1.7 | | -133=7x | | 3(4x+3)=-8(2+x) | | 3(4x+3)=-8(2+x) | | 6(3u+1)/5-1/2=7/10. | | X^2019+2019x-2019=0 | | 10u=52 | | 3(4x+3)=-8(2+x) | | 3(4x+3)=-8(2+x) | | 18=-8x+14 |